Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Research of the DI Diesel Spray Characteristics at High Temperature and High Pressure Ambient

2007-04-16
2007-01-0665
In order to clarify the diesel fuel spray characteristics inside the cylinder, we developed two novel techniques, which are preparation of same level of temperature and pressure ambient as inside cylinder and quantitative measurement of vapor concentration. The first one utilizes combustion-type constant-volume chamber (inner volume 110cc), which allows 5 MPa and 873K by igniting the pre-mixture (n-pentane and air) with two spark plugs. In the second technique, TMPD vapor concentration is measured by using Laser Induced Exciplex Fluorescence method (LIEF). The concentration is compensated by investigation of the influence of ambient pressure (from 3 to 5 MPa) and temperature (from 550 to 900 K) on TMPD fluorescence intensity. By using two techniques, we investigated the influence of nozzle hole diameter, injection pressure and ambient condition on spray characteristics.
Technical Paper

Effect of Hydrocarbon Molecular Structure on Diesel Exhaust Emissions Part 2: Effect of Branched and Ring Structures of Paraffins on Benzene and Soot Formation

1998-10-19
982495
The effect of the chemical reactivity of diesel fuel on PM formation was investigated using a flow reactor and a shock tube. Reaction products from the flow-reactor pyrolysis of the three diesel fuels used for the engine tests in Part 1(1) (“Base”, “Improved” and Swedish “Class-1”) were analyzed by gas chromatography. At 850C, Swedish “Class-1” fuel was found to produce the most PM precursors such as benzene and toluene among the three fuels, even though it contains very low amounts of aromatics. The chemical analyses described in Part 1 revealed that “Class-1” contains a large amount of branched and cyclic structures in the saturated hydrocarbon portion of the fuel. These results suggest that the presence of such branched and ring structures can increase exhaust PM emissions.
Technical Paper

Effect of Hydrocarbon Molecular Structure on Diesel Exhaust Emissions Part 1: Comparison of Combustion and Exhaust Emission Characteristics among Representative Diesel Fuels

1998-10-19
982494
Combustion and exhaust emission characteristics were compared among three representative diesel fuels called “Base (corresponding to a Japanese market fuel)”, “Improved” and Swedish “Class-1” using both a modern small and an optically accessible single-cylinder DI diesel engines. In these tests, the relative amount of PM collected in the exhaust was “Base” >“Class-1” >“Improved” at almost all of the operating conditions. This means that “Class-1” generated more PM than “Improved”, even though “Class-1” has significantly lower distillation temperatures, aromatic content, sulfur, and density compared with “Improved”. There was little difference in combustion characteristics such as heat release rate pattern, mixture formation and flame development processes between these two fuels. However, it was found that “Class-1” contained more branches in the paraffin fraction and more naphthenes.
Technical Paper

Development of New Hybrid System for Compact Class Vehicles

2009-04-20
2009-01-1332
Toyota has been evolving a hybrid system since introducing the first mass-production hybrid vehicle in 1997 in response to the increasing automotive-related issues of CO2 emissions, energy security, and urban air pollution. This paper describes a newly developed hybrid system design and its performance. This system was developed with the main purpose to improve fuel consumption, especially for better real world fuel consumption; and to enhance its compatibility with multiple vehicle adoption by downsizing and reducing the weight of its components. At the same time, the hybrid system achieved improved power performance while satisfying stringent emission regulations in the world.
Technical Paper

An Analysis of Behavior for 4WD Vehicle on 4WD-chassis Dynamometer

2010-04-12
2010-01-0926
Technologies of 4WD chassis dynamometers (CHDY hereinafter) have advanced dramatically over the past several years, enabling 4WD vehicles to be tested without modifying their drive-train into 2WD. These advances have opened the use of 4WD-CHDY in all fuel economy and emission evaluation tests. In this paper, factors that influence the accuracy of fuel economy tests on 4WD CHDY are discussed. Fuel economy tests were conducted on 4WD CHDY and we found that most of the vehicle mechanical loss is the tire loss and that stabilizing the tire loss of the test vehicle is essential for the test reproducibility.
Technical Paper

Impact Study of High Biodiesel Blends on Exhaust Emissions to Advanced Aftertreatment Systems

2010-04-12
2010-01-1292
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. In the impact on exhaust emissions, the impact of high biodiesel blends into diesel fuel on diesel emissions was evaluated. The wide variety of biodiesel blendstock, which included not only some kinds of fatty acid methyl esters(FAME) but also hydrofined biodiesel(HBD) and Fischer-Tropsch diesel fuel(FTD), were selected to evaluate. The main blend level evaluated was 5, 10 and 20% and the higher blend level over 20% was also evaluated in some tests. The main advanced technologies for exhaust aftertreatment systems were diesel particulate filter(DPF), Urea selective catalytic reduction (Urea-SCR) and the combination of DPF and NOx storage reduction catalyst(NSR).
Technical Paper

Study of High Efficiency Zero-Emission Argon Circulated Hydrogen Engine

2010-04-12
2010-01-0581
The potential of high efficiency zero-emission engines fueled by hydrogen, which is regarded as a promising form of energy for the future, is being researched. The argon circulated hydrogen engine [ 1 ] is one system theoretically capable of achieving both high efficiency and zero emissions, and its feasibility for use in vehicles has been studied. Specifically, tests were performed to verify the following issues. It was examined whether stable hydrogen combustion could be achieved under an atmosphere of argon and oxygen, which has a high specific heat ratio, and whether the substantial thermal efficiency improvement effect of the argon working gas could be achieved. An argon circulation system was also studied whereby steam, which is the combustion product of the hydrogen and oxygen emitted from the engine, is separated by condensation to enable the remaining argon to be re-used.
Technical Paper

Improvements to Premixed Diesel Combustion with Ignition Inhibitor Effects of Premixed Ethanol by Intake Port Injection

2010-04-12
2010-01-0866
Premixed diesel combustion modes including low temperature combustion and MK combustion are expected to realize smokeless and low NOx emissions. As ignition must be delayed until after the end of fuel injection to establish these combustion modes, methods for active ignition control are being actively pursued. It is reported that alcohols including methanol and ethanol strongly inhibit low temperature oxidation in HCCI combustion offering the possibility to control ignition with alcohol induction. In this research improvement of diesel combustion and emissions by ethanol intake port injection for the promotion of premixing of the in-cylinder injected diesel fuel, and by increased EGR for the reduction of combustion temperature.
Technical Paper

Development of High-Strength Aluminum Piston Material

2010-04-12
2010-01-0220
Mass reduction of parts is growing in importance as a means for reducing CO2 emissions from vehicles.The aim of the present research was to contribute to further mass reduction of pistons by developing a new aluminum casting material with highest level of fatigue strength. This goal was achieved using a development concept of creating a homogeneous structure in which Ti was added to create a fine structure and appropriate quantities of Fe and Mn were added to form a compound that is stable at high temperatures. Stand-alone tests of prototype pistons fabricated using the developed material show that the material is 14% stronger than the conventional material, thereby enabling increases in power and mass reduction.
Technical Paper

Newly Developed AZ Series Engine

2001-03-05
2001-01-0327
The design of the newly developed Toyota AZ series 4 cylinder engine has been optimized through both simulations and experiments to improve heat transfer, cooling water flow, vibration noise and other characteristics. The AZ engine was developed to achieve good power performance and significantly reduced vibration noise. The new engine meets the LEV regulations due to the improved combustion and optimized exhaust gas flow. A major reduction in friction has resulted in a significant improvement in fuel economy compared with conventional models. It also pioneered a newly developed resin gear drive balance shaft.
Technical Paper

Development of Recycling Technology for Water-Borne Paint - Development/Practical use of Recyclable Paint for Parts -

2001-03-05
2001-01-0361
The transfer efficiency for painting processes utilizing water-borne materials is low, and the residual paint is disposed of as waste. In this study, we focused on a recycling system to collect and dissolve the paint over-spray in the booth water, and to concentrate and regenerate it by means of an ultra filter (UF). Paint adaptable to the recycling system has been developed by providing compatibility between the high hydrophilicity of liquid paint and the high hydrophobicity of the paint film, in order to ensure the recyclability and the high anti-corrosion performance required of paint on automobile underbody parts. This recycling technology is used in an actual propeller shaft painting process and provides large waste reduction and a decrease in painting cost.
Technical Paper

Development of New-Generation Hybrid System THS II - Drastic Improvement of Power Performance and Fuel Economy

2004-03-08
2004-01-0064
Toyota Hybrid System (THS), the powertrain that combines a gasoline engine and an electric motor was first introduced in December 1997. It became the first mass-produced hybrid passenger vehicle in the world, gaining a reputation as a highly innovative vehicle, and its cumulative worldwide sales have exceeded 120,000 units. In 2003, THS had a further evolution. The “new-generation Toyota Hybrid System (THS II)” would be introduced on the new Prius. This report shall explain “THS II”, which achieved drastic improvements in power performance and fuel economy, while securing the most stringent emission standard Advanced Technology Partial Zero Emission Vehicle (ATPZEV).
Technical Paper

A Measuring Technology to Analyze HC Concentration in the Air Intake System while the Engine is in Operation

2004-03-08
2004-01-0142
In order to correspond to the exhaust emissions regulations that become severe every year, more advanced engine control becomes necessary. Engine engineers are concerned about the Hydrocarbons (HCs) that flow through the air-intake ports and that are difficult to precisely control. The main sources of the HCs are, the canister purge, PCV, back-flow gas through the intake valves, and Air / Fuel ratio (A/F) may be aggravated when they flow into the combustion chambers. The influences HCs give on the A/F may also grow even greater, which is due to the increasingly stringent EVAP emission regulations, by more effective ventilation in the crankcase, and also by the growth of the VVT-operated angle and timing, respectively. In order to control the A/F more correctly, it is important to estimate the amount of HCs that are difficult to manage, and seek for suitable controls over fuel injection and so on.
Technical Paper

Analysis of the HC Behavior in the Air Intake System while Vehicle is Parked

2004-03-08
2004-01-0141
CARB (California Air Resources Board) has required the evaporative emissions to be restricted to 1/4th of the parameter stated in the 1995 regulations. Furthermore, hydrocarbons (hereafter, HC) from the fuel system must be reduced to near 0.0 grams, according to the PZEV (Partial Zero Emission Vehicle) regulations enforced from 2003. The wet film in intake ports and fuel leaking from the injector nozzles evaporate and diffuse while the car is parked, and consequently may cause HC to leak the air cleaner inlet. The air cleaner which prevents HC leakage from the air intake system is already in mass production. In the course of designing this product to be installed in a vehicle, the authors developed a method to estimate the amount of HC that reaches the air cleaner. Based on detailed investigation on HC distribution and the changes that occur during parking, the HC amount reaching the air cleaner was calculated by both the equation of diffusion and the equation of state.
Technical Paper

Development of New Brake Control System With Gear Pump Modulator

2004-03-08
2004-01-0253
In recent years, there has been a growing need for excellent automobile safety. The number of vehicle with active safety systems such as ABS, Brake Assist and VSC (Vehicle Stability Control) is dramatically increasing. A current brake control systems tend to generate activating noise and uncomfortable brake pedal feeling, which they have to restrain its positive use during ordinary braking. To improve this point, a new brake control system has been developed. This paper introduces the configuration, functions and effects of the system. The new hydraulic modulator adopts a gear pump (trochoid pump) and linear solenoid valves. This allows the modulator to be controlled silently and smoothly. As a result, it becomes possible to apply hydraulic pressure in the normal operating range at any time and a high level of performance is realized. Several new benefits were added to the current control system.
Technical Paper

Carbon Dioxide Measuring Technology in Engine Combustion Chambers

2004-03-08
2004-01-1340
The authors have developed an instrument that measures the CO2 concentration in engine combustion chambers using the infrared absorption method. The characteristics of this technology are as follows: 1 Measuring can be carried out while the engine is running at 600r/min to more than 3000r/min, full load operation. (Applicable to all EGR conditions) 2 Quick response; 2ms 3 High linearity; ±1% Full Scale and under (FS: 10%) 4 No aggravation is caused to the intake/exhaust performance of engines This technology contributes to the improvement of the in-cylinder EGR system using, for instance, a variable valve-timing mechanism that is now expanding in number of applications, and also the conventional EGR system.
Technical Paper

Development of New Concept Iridium Plug

2001-01-05
2001-01-1201
In the field of automotive gasoline engines, new products aiming at greater fuel economy and cleaner exhaust gases are under development with the aim of preventing environmental destruction. Severe ignition environments such as lean combustion, stronger charge motion, and large quantities of EGR require ever greater combustion stability. In an effort to meet these requirements, an iridium plug has been developed that achieves high ignitability and long service life through reduction of its diameter, using a highly wear-resistant iridium alloy as the center electrode.(1)(2) Recently, direct injection engines have attracted attention. In stratified combustion, a feature of the direct injection engine, the introduction of rich air-fuel mixtures in the vicinity of the plug ignition region tends to cause carbon fouling. This necessitates plug carbon fouling resistance.
Technical Paper

Development of Planar Oxygen Sensor

2001-03-05
2001-01-0228
In preparation for compliance with California's SULEV standard and Euro STAGE 4 standard, which will take effect in 2002 and 2005, respectively, we have developed a laminated planar oxygen sensor. The developed sensor has the following characteristics: high thermal conductivity and superior dielectric characteristic, due to direct joining of the heater element alumina substrate and the sensor element zirconia electrolyte; low heat stress at temperature rise, due to optimized heater design; superior sensor protection from water droplets, and improved sensor response, due to optimized arrangement of intake holes in the sensor cover. With these characteristics, the developed oxygen sensor can be activated in 10 seconds after cold start. This report describes the technologies we used to develop the early-activation oxygen sensor.
Technical Paper

Modeling and Numerical Analysis of NOx Storage-Reduction Catalysts - On the Two Effects of Rich-Spike Duration

2001-03-05
2001-01-1297
Two effects of rich-spike duration on NOx-storing have been analyzed. The first one, that NOx-storing speed decreases as rich-spike duration increases, is explained as the influence of NOx diffusion in wash-coat layer, which is quantified by a simple mathematical expression for NOx-storing rate. The second one, a peculiar behavior of NOx-storing in appearance of the outlet NOx concentration, is clarified: Heat produced directly or indirectly (via oxygen storage in ceria) by rich-spike warms up the downstream part, which releases excess NOx at the raised temperature. Contributions of the oxygen storage and the carbonate of NOx-storage material are also discussed.
Technical Paper

Piston Temperature Measuring Technology Using Electromagnetic Induction

2001-05-07
2001-01-2027
Authors have developed an apparatus which measures the piston temperature using electromagnetic induction. The characteristics of this apparatus are as follows; 1 Applicable to 6 points per cylinder and all cylinders 2 Capable of measuring while the engine is running from start to 6000r/min full-load operation 3 Wide measuring range; from -30 to 400 °C 4 High accuracy; ±2.5 °C 5 Quick and easy setup 6 High durability This technology contributes to realizing the best balance of piston reliability and matching of combustion conditions. In this report, authors analyzed its influences upon piston temperature when the ignition timing,the oil/water temperature or the oil flow from piston jet were changed, respectively.
X